Flux-mediated doping of SrTiO3 photocatalysts for efficient overall water splitting

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boosting the Efficiency of Suspended Photocatalysts for Overall Water Splitting.

Water Splitting I is a significant task to cover the residential energy demand of a society (approximately 20% of the total) with solar energy, but it is a much greater challenge to cover all of it, including the demands of industry, commerce, and transportation. The 20% goal may be achievable through photovoltaic-powered households and appliances, but the 100% goal will require extensive facil...

متن کامل

Nanoscale strontium titanate photocatalysts for overall water splitting.

SrTiO(3) (STO) is a large band gap (3.2 eV) semiconductor that catalyzes the overall water splitting reaction under UV light irradiation in the presence of a NiO cocatalyst. As we show here, the reactivity persists in nanoscale particles of the material, although the process is less effective at the nanoscale. To reach these conclusions, Bulk STO, 30 ± 5 nm STO, and 6.5 ± 1 nm STO were synthesi...

متن کامل

New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light

The Journal of Physical Chemistry C is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Feature Article New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light Kazuhiko Maeda, and Kazunari Domen J. Phys. Chem. C, 2007, 111 (22), 7851-7861• DOI: 10.1021/jp070911w • Publication Date (Web): 15 May 2007 Downloaded from http:/...

متن کامل

Transient Behavior of Ni@NiOx Functionalized SrTiO3 in Overall Water Splitting

Transients in the composition of Ni@NiO x core-shell co-catalysts deposited on SrTiO3 are discussed on the basis of state-of-the-art continuous analysis of photocatalytic water splitting, and post-XPS and TEM analyses. The formation of excessive hydrogen (H2:O2 ≫ 2) in the initial stages of illumination demonstrates oxidation of Ni(OH)2 to NiOOH (nickel oxyhydroxide), with the latter catalyzing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Materials Chemistry A

سال: 2016

ISSN: 2050-7488,2050-7496

DOI: 10.1039/c5ta04843e